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Motivation

Some Background

Random matrix theory, originally developed to study statistics of
eigenvalues in nuclear physics [Wigner, Wishart et al. ’50-60’s]
Hermitian matrix models as a ”scalar field theory in zero dimensions”
[’t Hooft ’74]

Z =

∫
dM exp

(
N

gs
TrV (M)

)
’t Hooft double line notation → Feynman Diagrams (Ribbon
Graphs/Fatgraphs)
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Motivation

First Steps towards Combinatorics in Matrix Models

Planar Free Energy is the generating function of planar maps with
vertices of prescribed valencies [BIPZ ’78]
Z are tau-functions of integrable hierarchies, and satisfy differential
constraints of the form of Virasoro Algebra.[Douglas, Shenker, Gross,
Migdal, Brezin Kazakov, etc.]
Purely combinatorially, recursion in the form of Tutte equations.
Describes cutting and contracting edges of grapgs, and gluing
boundaries.
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Motivation

Combinatorics of Amplitudes

BCJ Relations, BCFW recursion etc.
Positive geometry methods (Amplituhedron, Associahedron etc. )
[Arkani-Hamed et al.]
Surface Functions and the Cut Equation [Arkani-Hamed, Frost,
Salvatori ’24]
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Motivation

Overview: Deforming Away from the Matrix Model

(Why?)Toy Models:
Surface functions GS : Topological surfaces S with boundary, that
retain a lot of the combinatorics of colored scalar amplitudes, and
gauge theories (NLSM and YM)
Stringy Integrals Gα′

S : Integrals over open string moduli spaces that
are similar to open-string amplitudes (but much simpler)
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Motivation

Overview

Bridging the combinatorics of Matrix models and surface functions using
Virasoro constraints and the cut equation is mahtematically interesting
because of the Lie Algebra perspective to the Mapping Class Group Action
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Surfaceology

Surface functions

GS are generating functions of topologically inequivalent
polyangulations of the topological surface S

They are polynomials in finitely many variables xC associated to the
(mapping-class-group orbits of) paths on S with endpoints on the
boundary of S
These xC variables can be thought of as “inverse propagators” of a
QFT integrand, but where we “forget” some information about loop
redefinitions.
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Surfaceology

Surface functions in use

If S is a disk with marked points on the boundary, labelled 1, 2, . . . , n,
GS is the tree amplitude for a colored scalar ΦJ

I with some scalar
interaction lagrangian

L =
∑
k=3

tk
k

TrΦk.

At four points, we write this tree amplitude as
G1,2,3,4 = x13t

2
3 + x24t

2
3 + t4
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Surfaceology

Surface functions in use

S = , the annulus with a marked point on each boundary, labelled 1
and 2. There is only one distinct triangulation of S, which is given by
two curves from 1 to 2, so that

G = x212t
2
3 + x12t4,

A more complicated example is S = , the torus with a hole and no
marked points. In this case

G =
1

3
x3t23 +

1

2
x2t4.
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Surfaceology

Matrix Model Limit

in the limit that all x-variables are set equal, xC = x, GS resembles a
contribution to a matrix model free energy. For example, in the case
of a cubic Lagrangian,

GS(x, t3) = FS xEtV3 ,

FS is the number of cubic fatgraphs (up to symmetry factors) that
can be drawn on the surface S, which all have E = n− 3 + 3L edges
and V = 2n− 2 + 2L vertices.The loop order, L, is given by
L = 2g + b− 1 where S has genus g and b boundary components.
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Surfaceology

Matrix Model Limit

F = − logZ of the Hermitean matrix model with cubic potential,

Z =

∫
dMe−

1
ℏ TrV (M), V (M) =

1

2x
M2 +

t3
3
M3.

In particular

F = 1 +
∑
L=2

ℏL−1
∑

2g+b=L+1

N bGSg,b
(x, t3),

where Sg,b is the genus g surface with b boundaries and no marked points.
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The Cut Equation

Cut Equation in Action

Before taking this “matrix model limit”, the surface functions GS

satisfy a remarkably simple constraint:
∂xCGS = GS\C ,

For example, cutting the torus with one hole open along its A-cycle
(say) gives an annulus, and indeed:

∂xG = x2t23 + xt4 = G .

Moreover, cutting the annulus (with a marked point on each
boundary) along the curve connecting its two boundaries gives a
4-point disk:

∂x12G = x12t
2
3 + x12t

2
3 + t4 = G1,2,1,2.
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The Cut Equation

Putting cuts in context

Hepp bound of the partial amplitudes in a colored scalar theory.
every vacuum contribution GS (for S with no marked points) can be
recursively solved in terms of the tree-level amplitudes G1,...,n. In
other words, every vacuum surface S can be cut open into a product
of disks.
By contrast, the well known constraints on the matrix model free
energy F — the Virasoro constraints or Schwinger-Dyson equations
— are constraints only on the numbers of vacuum fatgraphs.
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The Cut Equation

The Bridge

How are these combinatorial constraints on the numbers of vacuum graphs
related to the combinatorial constraints imposed by the cut equation?
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Matrix Models

Review

The 1-Hermitian Matrix Model
Z =

∫
dM e−

1
ℏ TrV (M), V (M) =

∑
k

tk
k
Mk.

The Full series can be written out as:

F =
∑

{Vk}≥0

∏
k≥3

(
−tk
kℏ

)Vk
⟨⟨

1∏
k Vk!

∏
k≥3

Tr
(
Mk
)Vk

⟩⟩
c

,

So grouping terms together we get

F = − logZ =
∑
g,p≥0

ℏL−1NpGg,p(t),

Gg,p(t) =
∑
Γ

1

Aut(Γ)
tΓ, tΓ = t−E

2

∏
tVk
k ,
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Matrix Models

Review

A vacuum fatgraph with Vk vertices of valence k has E edges, V
vertices and L = E − V loop order, with

L = 1 +
1

2

∑
k≥3

(k − 2)Vk, E =
∑
k≥3

k

2
Vk, V =

∑
k≥3

Vk

For example, in the case of the cubic potential,
V (M) = t2M

2/2x+ t3M
3/3, the partition function Z is a

generating function for counting cubic fat graphs, and

F =
∑
g,p≥0

ℏL−1Np tV3 t−E
2 Cg,p,
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Virasoro Constraints
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Virasoro Constraints

Varying M → M + ϵMn+1

Z =

∫
U(N)

dU

(
N∏
i=1

dλi

)
∆(λ)2e−

1
ℏ
∑

i V (λi), ∆(λ) =
∏
i<j

(λi − λj)

δ log dλ = ϵ(k + 1)
∑
i

λk
i dλ.

δ log∆(λ)2 = 2
∑
i<j

λk+1
i − λk+1

j

λi − λj
= ϵ

∑
i,j

k∑
r=0

λr
iλ

k−r
j − (k + 1)

∑
i

λk
i

 ,

δ
(
e−

1
ℏ
∑

i V (λi)
)
= − ϵ

ℏ
∑
i

V ′(λi)λ
k+1
i

(
e−

1
ℏ
∑

i V (λi)
)
.
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Virasoro Constraints

Schwinger Dyson Equation and Virasoro Constraints

Recalling that TrMk =
∑

λk
i , we see that the Schwinger-Dyson

equation for the Hermitian matrix model is⟨
n∑

a+b=k

Tr(Ma)Tr
(
M b
)
− 1

ℏ
Tr
(
V ′(M)Mk+1

)⟩
= 0,

where ⟨· · · ⟩ denotes the integral with respect to the measure
dM exp(−TrV (m)/ℏ). Using

−ℏ
Z

∂Z

∂tk
=
⟨
TrMk

⟩
,

ℏ2

Z

∂2Z

∂ta∂tb
=
⟨
TrMaTrM b

⟩
,

the Schwinger-Dyson equations can be recast in the form LkZ = 0
where

Lk = ℏ2
∑

a+b=k

∂ta∂tb +
∑
i

ti∂tk+i

R.K.Balaji Cutting Open Matrix Models December. 1, 2025



Virasoro Constraints

Berends Giele

Writing Z = exp(F ) and using the perturbative expansion of the free
energy as a series in ℏ and the tk’s, the Virasoro constraints become

∑
a+b=k

 ∑
g1+g2=g
p1+p2=p

∂Gg1,p1

∂ta

∂Gg2,p2

∂tb
+

∂2Gg−1,p

∂ta∂tb

+
∑
i

ti
∂Gg,p

∂tk+i
= 0

=
g g1 g2

∑
g − 1 +

Figure: The loop equations schematically take the form of a “Berends-Giele”
recursion labelled by genus g surfaces with p holes.
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Virasoro Constraints

Adding Back External Legs

One way to introduce ‘external legs’ is to evaluate correlation
functions such as ⟨Tr(Mn)⟩
Just like the free energy F , we can expand these correlation functions
in ℏ and the ’t Hooft coupling λ ≡ ℏN

⟨Tr(Mn)⟩ =
∑
g,p

ℏL−1+nNp+nĜg,p,1(n),

functions Ĝg,p,1(n) of the tk, given by a sum over fatgraphs with: one
trace factor that has n external legs; p closed loop boundaries (each
contributing N); and that can be embedded in a genus g surface with
p holes and 1 boundary
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Virasoro Constraints

Adding Back External Legs

Note that each external line of the fatgraph contributes 1/t2: in other
words, we do not “amputate” the external propagators. Equivalently,
we are studying vacuum fatgraphs that have one distinguished
n-valent vertex
For example, taking V to be the cubic potential, and keeping only
connected diagrams,

⟨Tr
(
M2
)
⟩c = ℏ−2λ2(t2)

−1 + 3ℏ−2λ3(t2)
−4t23 + . . . ,

where the first term is a single “tree level” propagator diagram, and
the second term are the planar 1-loop 2-point diagrams.
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Virasoro Constraints

Resolvents

Correlators can be organised into generating series called resolvents.
For the single trace correlators, write

W = λ

⟨
Tr

1

z −M

⟩
c

=
∞∑
n=0

ωnz
−n−1, ωn = λ⟨TrMn⟩.

Then the Virasoro constraints may be expressed in terms of W as

W (z)2 +
ℏ
λ
W ′(z) =

1

λ
V ′(z)W (z)−R(z), (1)

Write W0 for the g = 0 contribution to this sum, which corresponds
to order ℏ−2 (with λ fixed). Then the genus zero contributions are
constrained by

λW0(z)
2 = V ′(z)W0(z) + · · · .
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Virasoro Constraints

Resolvents

Picking out terms at fixed order z−n−2, for n > 0, gives∑
a+b=n

ω(0)
a ω

(0)
b = ω

(0)
n+2 + ω

(0)
n+3.

In the λ expansion of the ω, the leading term is
ω(0)
n = λn+1Ĝ(n) + · · · ,

where Ĝ(n) is the contribution from the n-point tree diagrams. So
we see that

Ĝ(n+ 2) =
∑

a+b=n

Ĝ(a)Ĝ(b),

which is the usual “Berends-Giele” recursion for the Catalan numbers. The
initial conditions on the recursion are Ĝ(1) = 0, Ĝ(2) = 1, Ĝ(3) = 1.
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Virasoro Constraints

Calculations using the Cut Equation

L g h n = 1 2 3 4 5 6
0 0 1 x x 1 2 5 14
1 0 1 1 3 10 35 126 462
1 0 2 x 1 4 (18,15) (72,56) (210,300,280)
2 0 1 8 48 240 1120 5040 22176
2 0 3 x x 32 192
2 0 2 x 16 92
2 1 1 1 10

Figure: The numbers of cubic diagrams computed by the cut equation.
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Virasoro Constraints

Calculations using the Cut Equation

L n = 1 2 3 4 5 6
0 x x x 2 5 14
1 1 3 10 35 126 462
2 9 58

Figure: Loop order expansion of ⟨Tr(Mn)⟩ in the planar limit, computed by the
cut equation.
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The Stringy Integral
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The Stringy Integral

The Stringy integral

Here, we regard them as α′ deformations of surface functions, and use
them as a toy model to study the most basic combinatorial content of
open string integrals. In particular,
At tree level this is just the statement that the field theory limit of
the Veneziano amplitudes are tree amplitudes.
For example, the surface function for the 4-point disk,
G4 = x13 + x24 is the α′ → 0 limit of the Euler beta function,

Gα′
4 =

∫ ∞

0

dy

y

(
y

1 + y

)α′/x13
(

1

1 + y

)α′/x24

.
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The Stringy Integral

Laplace Transforms of Vg,n

Gα′
=

∫ ∞

0

d log y1d log y2d log y3
MCG (y1y2y3)

α′
2x .

To evaluate this integral, it is useful to rewrite the measure as

Gα′
=

∫ ∞

0

dL

2
e−

α
2x

L

∫
M1,1(L)

µWP ,

where L/2 = − log(y1y2y3) is the length of the boundary, and µWP is the
Weil-Peterson volume form, restricted to the moduli space where the
boundary has constant length L. This is given in our coordinates as

µWP =
dy1dy2
y1y2

=
dy2dy3
y2y3

=
dy3dy1
y3y1

.
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The Stringy Integral

Laplace Transforms of Vg,n

When rewritten in different coordinates (Fenchel-Nielsen coordinates), the
integral of µWP becomes identical to Mirzakhani’s calculation of
Weil-Peterson volumes using the McShane identity. This gives

V1,1(L) ≡
∫

M1,1(L)

µWP =
L2

24
+

π2

6
.

So
Gα′

=
1

3

( x

α′

)3
+ ζ2

( x

α′

)
.

In particular, at leading order in α′,

(α′)3Gα′ → G = x3/3.
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The Stringy Integral

α′ Deformations
Gα′

S become polynomials in the matrix model limit, they cannot be
realized as contributions to a one-matrix model with α′ corrections. Take
a potential V (M) =

∑
tkM

k/k, which is the cubic potential to leading
order in α′. Then we add α′ corrections to V :

t2 =
α′

x
+O((α′)2), t3 = 1 +O(α′), tk = O(α′) (k > 3).

The torus with a hole contributes at order ℏN to the free energy
F = logZ of this model, with two diagrams: a g = 1 fatgraph with three
edges and two cubic vertices, and a g = 1 fatgraph with two edges and
one quartic vertex.

[ℏN ] F = t23t
−3
2

1

3
+ t4t

−2
2

1

2
.

We recover Gα′
1,1 if we set, for example, t2 = α′/x, t3 = 1 + πt2/

√
2, and

t4 = −
√
2πt2/3. On the other hand, the sphere with three holes

contributes at order ℏN3, also with two diagrams:

[ℏN3] F = t23t
−3
2

1

3
+ t4t

−2
2

1

2
.

But cannot simultaneously make this contribution equal to Gα′
0,3 = x/α′ if

we also make the ℏN contribution equal to Gα′
1,1.
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The Stringy Integral
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