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Overview and Motivation

The aim of this program is to study the case of c=1 Liouville Theory having a dual descripধon in

terms of Matrix Quantum Mechanics (MQM) of N-ZZ D0 Branes. Here, instead of the

convenধonal approach, where one interprets Liouville Theory as a worldsheet Conformal Field

Theory (CFT, String Theory) embedded in a 2-dimensional target space, we take Liouville

Theory as the Quantum Gravity Theory in bulk spaceধme.

This approach is corroborated by the fact that a holographic connecধon can be seen as in the

case of a single Hermiধan matrix model describing (2,p) minimal models coupled to gravity,

where the physics of JT-gravity can be reached as a p → ∞ limit of these models. We study the

aforemenধoned theory since it is a richer UV-Complete theory of 2D-gravity with maħer.

The Matrix Models here do not play the role of their boundary duals, but give a direct link to

the third quanধzed Hilbert Space descripধon, i.e The target space of c=1 string plays the role of

the superspace in which these two dimensional geometries are embedded.

From the Matrix Model point of view, we introduce appropriate loop operators to create

macroscopic boundaries on the bulk geometry. We do this in such a way that the boundary is

of fixed size l and is related to the temperature β of the holographic dual theory.

Here we are currently looking at two point macroscopic loop operator correlators corresponding

to Euclidean wormhole geometry and three point correlators with a (local) Vertex operator on

the same Geometry, which corresponds to the inserধon of an operator on the boundary. We

iniধally look at these objects at genus zero and then use MQM to study them at higher genera.

Liouville Theory And Equations of Motion

The Liouville Theory for the bulk spaceধme with a boundary is defined by the acধon funcধonal:
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φ is the Liouville field, and (z, z̄) are the Euclidean target space coordinates.

K is the extrinsic curvature, and Q is a parameter set by the underlying CFT. As for the case of

c = 1 here, b = 1 and Q = 2.
µB is the boundary cosmological constant and µ is the bulk cosmological constant.

A maħer field X(z, z̄) is also present.

Wheeler-DeWitt Perspective and Genus ZeroWavefunctions

Ađer canonically quanধzing the theory, and proceeding to study the spectrum of the Hilbert space

of the theory, we arrive at the bulk minisuperspaceWheeler-Dewiħ Equaধon:(
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∂φ2
0

+ 4µe2φ0 − q2
)

Ψq(φ0) = 0

In the above equaধon q is the momentum conjugate to the zero mode of the maħer field

X(z, z̄)
In case the surface has a boundary of fixed length l, then this can be expressed in terms of the
zero mode as l = eφ0, which is kept fixed.

The wavefuncধons correspnding to loops with macroscopic sizes at genus zero are:

Ψmacroq (l) = 1
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These wavefuncধons are exponenধally damped for l → ∞ and oscillate an infinite number of

ধmes for l → 0.
On the other hand, the microscopic states correspond to wavefuncধons that diverge as l → 0
and vanish as l → ∞, and are given by the analyধc conধnuaধon of the previous soluধon.

Matrix QuantumMechanics and Loop Operators

We now pass to the double scaled free fermionic theory descripধon of the model, that would

allows us to resum geomeধres corresponding to higher genera, and compute various

observables.

Ađer diagonalizing the variables of matrix quantum mechanics and passing to the double

scaling limit, we have the dynamics described by the second quanধzed non-relaধvisধc

fermionic field acধon:
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where, the double scaled fermi fields are defined using the normalized even/odd cylinder

funcধons ψs(ω, λ)s = ±
ψ̂ =

∫
dωeiωtb̂s(ω)ψ2(ω, λ)

And the fermi-sea vacuum |µ〉 (µ being the chemical potenধal), is defined by:
b̂s(ω)|µ〉 = 0, ω < µ

b̂
†
s(ω)|µ〉 = 0, ω > µ

{b̂†s(ω), b̂′s(ω′)} = δs,s′(ω − ω′)

We then define the fixed length matrix loop operator in terms of L, where L is the discrete

laষce variable, and µB is the dual variable (which is the chemical potenধal) :
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We have the 1/N factor here to account for the symmetries in the Feynman diagram.

In terms of the fermions, the density operator is:

ρ̂(x, λ) = ψ̂†(x, λ)ψ̂(x, λ)

Using this in the conধnuum limit, and taking the fourier transform of the macroscopic loop

operator, we have

Ŵ(z, x) =
∫ ∞

−∞
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And then we Wick rotate z = ±il. The expectaধon value of the loop operator can be denoted
as:

M1(z, x) = 〈ψ̂†eizλψ̂〉

(Higher point Correlators are denoted byMn(zi, xi))

Loop Equations, Correlators, and Geometries - Hartle-Hawking Tadpole
In the case of the one Macroscopic loop, we have the Hartle-Hawking wavefuncধon:

Analyধcally, this is given by:

ΨWdW (l, µ) = M1(z = il, µ) = <

i ∫ ∞

0

dζ

ζ
eiζ
ei coth(ζ/2µ)z

2
2

sinh(ζ/2µ)


The genus expansion is recovered by restoring string coupling κ, according to: µ → µ/κ, l →
κ1/2l, λ → κ1/2λ

The genus zero result is obtained from the previous equaধon by performing a 1/µ expansion of
the integrand:
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Loop Equations, Correlators, and Geometries - Propagator

In the case of the two macroscopic loops, we have the correlator of the propagator,

corresponding to the geometry of a Euclidean wormhole:

In the two loop case, we have the following expression for the derivaধve of the correlator
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At genus zero, this expression is given by:
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ModifiedWheeler Dewitt Equation for Higher Genera

Considering the Hartle-Hawking tadpole case again, we can compute the derivaধve ofM1 with
respect to µ exactly in terms of Whiħaker funcধons (for q = 0). This has the interpretaধon as

the one point funcধon of the area operator 〈
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The Whiħaker funcধons that appear in these expressions obey the equaধon:(
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This is the generalizaধon of the WdW equaধon that we found from Liouville theory to include

higher genera.

Discussion and Future Directions

We have shown howmatrix model technology can be used to describe Liouville Theory in the bulk,

in a third quanধzed picture. The future direcধons in which this program can be extended has to do

with compuধng the expectaধon values of inserধon of local vertex operators. This is achieved by

considering 3 macroscopic loops iniধally (corresponding to the pants topology) and shrinking one

of the loops into being a vertex operator.

Matrix Model Dictionary and References

Quantum Gravity Matrix Model Boundary Dual

Liouville potenধal µe2φ Inverted osciallator potenধal -

Cosmological constant µ Chemical potenধal −µ IR mass gap µ
D0 parধcle (φ: D, X : N) Matrix eigenvalue λ Energy eigenvalue Ei
Boundary: Sbdy = µB

∮
eφ Loop operator: 〈log[z − λ]〉 Microcanonical 〈ρdual(E)〉

Boundary cosmological constant µB Loop parameter z Energy E

Fixed size body l = eφ0 Loop length l Inverse temperature β
WdWwavefuncধon Ψ(l) Fixed size loop operator 〈M1(l)〉 Parধধon funcধon Zdual(β)
Third quanধzed vacuum Fermi sea of eigenvalues -

S-matrix of universes S-matrix of density quanta -

Two boundaries: l1,2 Loop correlator 〈M2(l1, l2)〉 SFF:l1,2 = β ± it
Two boundaries: µB Density correlator 〈ρ(1)ρ(λ2) Density of states correlator


